ZX-FP-C-*

光纤光栅解调仪快速使用手册

MANUAL FOR RAPID USE OF FIBER GRATING ANALYZER

版本: V2.1

智性科技南通有限公司

1安全和兼容

安全标识

下面的标识和信息可能在产品上标注了,安全标识的目的是警示用户可能存在的 危险,用户需要仔细阅读并理解安全标识和附带的解释,安全警告自身并不能消除任 何危险,给出的指示或警告也不能替代正当的事故防范措施。

WARNING: 仪器采用的是 220VAC 电源, 使用前请将随机附送的电源适配器与充电 电源接口稳固连接,防止电源不稳定, 对测试带来影响。

WARNING:如果设备没有按厂家指定的方式使用,设备提供的保护措施可能失效。 为了避免可能的损害,请勿使用任何带有明显损坏电源、线路、或外机壳的电子装置。

CAUTION:不要将产品暴露在雨中或其它过量的湿气中。

激光安全

CAUTION: 激光安全警告标签固定在仪器上,您可以在解调仪机箱面板上找到它。如果设备的激光光源出现了故障,请您一定要与我们联系进行维修和重新标定。请务必将功能异常的激光器与仪器寄回维修,用户请勿私自打开机壳。

WARNING: 此光源发出的光是看不到的, 但是它可能会对您的视力造成伤害, 请勿 将激光直接射入眼睛。

CAUTION:使用不干净或已经损坏的连接头可能会损坏其它的连接头。

CAUTION:请不要将连接头拧得太紧,这样可能会造成连接头损坏。

CAUTION:设备后面板的光学接口是 FC/APC 接口,连接时请确保连接头匹配,否则 会造成连接头损坏甚至导致模块损坏。

CAUTION:测试结束后,请及时将防尘帽扣在面板光学接口上,避免接口被灰尘污染,造成接口损耗过大或失效。请按以下步骤清洁光学接头:

- 1. 取一块干净的酒精棉。
- 2. 滴上少量酒精, 然后将多余的酒精挤出。
- 3. 打开光学接头的保护帽。
- 4. 将光学接头端面朝下按在酒精棉上平移, 重复几次, 然后新取一块酒精棉擦干。

2 硬件操作指导

面板功能

1:光纤接口 CH1-CH4; 2:RS232 串口; 3:RJ45 数据接口; 4:电源接口/开关;

设备参数

	参数	单位	指标
	支持通道数	СН	4-32
	检测波长范围	nm	1528-1568
	波长解调精度	pm	±1
性	波长解调分辨率	pm	0.1
能	波长重复性	pm	0.5
参	通道波长差异	pm	0
数	动态范围	dB	60
	采样频率	Hz	3\100\1K\2K
	额定电压/电流	V/A	220/3
	设备尺寸	mm	2U 机箱
	工作温度/湿度	°C /%	-25-60/0-75
	接口		RJ45/RS232

3 计算机配置操作指导

(1)计算机配置

计算机与解调仪之间的通信接口为 100Mb/s Ethernet, 协议类型为 UDP。

1)将 Windows 防火墙关闭。打开"控制面板",以此选择"Windows 防火墙"、"启 用或关闭防火墙",然后把专用网络和公用网络的防火墙全部关闭。

2)计算机 IP 地址配置:

上位机网络地址配置为: 192.168.0.14 (确保与解调模块处于同一网段, 且与网络 中的其它设备 IP 不冲突)

Internet 协议版本 4 (TCP/IPv4) 層性		×
常规		
如果网络支持此功能,则可以获取自动推 格系统管理员处获得适当的 IP 设置。	新派的 IP 设置。否则,你需要从网	
○自动获得 IP 地址(Q)		
●使用下面的 IP 地址(S):		
IP 地址(]):	192.168.0.14	
子网掩码(U):	255 . 255 . 255 . 0	
默认网关(D):		
○ 自动获得 DNS 服务器地址(B)		
● 使用下面的 DNS 服务器地址(E):		
首选 DNS 服务器(P):		
备用 DNS 服务器(A):		
□退出时验证设置(L)	高级(⊻)	
	确定取	Ä

(2)连接解调仪的电源、网线及传感器。

(3)解调仪开机

打开电源开关 4, 电源指示灯亮起。

4 软件操作指导

(1)软件配置

6 个项目

🔜 🛛 🛃 🗢 🗍 智性解调软件 _ 文件 主页 共享 查看 → - ↑ 🦲 → 智性解调软件 ∨ ひ 搜索"智性… ♪ 名称 修改日期 类型 大小 ▶ 快速访问 👕 back_Main 2019/7/19 10:07 BMP 图片文件 5,929 KB 三 卓面 A BGInfo.mdb 2019/7/25 11:15 MDB 文件 4,708 KB - 下载 4 GlobalInfo 2019/7/25 11:11 文本文档 1 KB 🔮 文档 Parameter 2019/7/25 11:11 文本文档 1 KB ■ 图片 Thresh 2019/7/25 11:11 文本文档 1 KB ZX ZXSensor 2019/7/18 18:10 应用程序 249 KB 🛄 此电脑 Autodesk 360 🏪 本地磁盘 (C:) 🕳 软件 (D:) 🕳 文档 (E:) 💣 网络

点击"ZXSensor"进入如下主界面:

4

×

0

Pice Pice 保存 清音 复位 记录 改置 多效 光谱 数据 ● 被长值 Pice 強振音 Pice Pice	X智性科	使光纤光相信号处理	68												- ø x
No. Ch01 Ch02 Ch03 Ch04 10 1553.926	2	ZHIN	ring	停止	保存	消音	复位	记录	设置	参数	光谱	数据	・ <mark>波长値</mark> ・物理量	知 注接	数据源:192.168.0.19 端 口:4567 频 率:100Hz
01 0533.926 03 03 04 04 05 06 06 07 07 08 08 09 10 11 11 12 13 14 14 15 15 16 16 17 18 19 20 19 20 19 20 19 20 10	No.	Ch01	Ch02	Ch	03	Ch04									
02 1585.695 03 04 05 06 06 07 08 09 10 01 11 01 12 01 13 01 14 01 15 01 16 01 19 01	01	1553.926													
03 04 05 05 06 07 08 08 09 08 10 08 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0	02	1558.695													
	03														
	04														
07 08 09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00	06														
08 09 10 11 12 13 14 15 16 17 18 19 20	07														
09 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00	08														
10 11 11 12 12 13 13 14 14 15 15 16 16 16 17 16 18 19 20 16	09														
11 12 13 14 14 14 15 16 16 17 17 18 18 19 20 19	10														
	11														
	12														
	13														
	15														
	16														
	17														
	18														
	19														
	20														
	-														
	-														

软件主界面:默认以列表形式显示波长

点击"设置"进入设备配置界面,首先进入"软件全局变量"设置,根据设备 型号进行采集频率和通道设置,例如:设备型号为"ZX-FP-C04-100"即设备为 4 通道、100Hz。设置完成后点击"确定"并重启软件(**注意:这两个参数必须和机型** 保持一致,不可随意更改)。

	启动 保存 消	音 复位 记录	设置	参数 1	光谱	数据	 · 波长值 · 物理量 	ि 连接
No. Ch01 Ch02 01 1553.933 02 1558.704 03 04 05 06 06 07 08 09 10 11 12 13 13 14 15 16 17 18 19 20	Che 数据采集参数设置 数据保存部径 数据保存间隔 数据保存间隔 数据保存问路 一数据网络传输 一数件启动后自 一数件启动后自 一数值报警检查 设置寻峰扫描间 参数固化	\Hac\Home\Desktop 1 列数 4 更新方式 3 - 每分种 ↓ 接收端IP: 127.0. 动运行 动数据保存 报警車口号 3 隔 80 GHz 读取序列号 确 定	上传对象 (液长 0.1 端口:)))))))))))))) ()) ()) ()) () () ()) () ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) () ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ()) ()) ()) ())) ())) ())) ())) ()))()) ())) ())) ())) ())) ()) ())) ())) ())) ())) ())) ())) ())) ())) ())) ()))) ()))) ()))) ()))) ()))) ())))) ())))))	▲				

	カ 保存 消音 复位 记录 设置 参数 光谱 数据 ・波长値 9回 ・物理量 甲断
No. Ch01 Ch02 01 1553.933 02 1558.704 03 04 05 06 06 07 08 09	ChC* ACAA F8G软件金属控制变量 × F8G软件金属控制变量 × 注意,本请结合设备硬件情况更改,否则可导致软件工作异常!! * 软件标题 暂性科技 设备频率 100 报 *
10 10 11 12 13 14 15 16 17	内部元学模块通讯IP: 192.168.0.19 靖日: 4567 通道数 4 ④ 通道波长数 20 本接收软件Socket靖日: 8001 设置后,请重新启动软件。 确定 取消
8 9 0	

数据保存路径:设置数据保存的位置,指向文件夹必须手动新建,软件不会自动新建 文件夹;

数据保存间隔:设置数据保存的时间间隔,例如:设备采集频率为 100hz,若保存间 隔设置为 1,即每秒保存 100 个数据;若保存间隔设置为 10,即每秒保存 10 个数 据,以此类推。

通道数据个数:数据保存时每个通道的光栅数量,最大 30。

保存类型:数据保存的类型,可选"波长/物理量或波长+物理量",软件默认波长和 物理量同时保存在不同文件下(W 开头文件为波长数据文件,V 开头文件为物理量文 件,物理量需要手动配置参数)。

启动后自动运行/启动后数据保存:选中后,软件启动后启动启用相应功能。

数据网络传输: 需要配合云服务器使用, 如有需求可与厂家联系。

报警申口号: 软件可实现 2 级报警, 配合高报警灯可实现现场的声光报警, 报警灯需 要单独购置 (购买链接: 选择 RS232 控制

https://item.taobao.com/item.htm?spm=a1z09.2.0.0.1c972e8dyKYPBO&id=601526688641&_u =6bh2rbo2372) .

设置寻峰扫描间隔: 正常默认 80, 如果遇到 2 个光栅间隔非常小, 软件已无法分辨 出 2 个光栅时, 可将该数值改为 40.

参数固化:将所有设置好的参数写进设备,断电重启后不会恢复到出厂设置。

(2)启动软件

点击"启动"按钮,"中断"标识变为"连接",即设备可正常工作,此界面为 波长界面,可显示实时的波长数据。

12	ZIATS		停止	保存	消音	复位	记录	设置	参数	光谱	数据	0 物理量	连按	端 口:4567 频 率:100Hz
No.	Ch01	Ch02	Ch	03	Ch04								0	
01	1553.926													
02	1558.695													
03														
04														
05														
06														
50														
10														
0														
11														
12														
3														
4														
15														
16														
7														
8														
19														
20														

(3)实时曲线

在波长模式下,双击所要显示曲线的波长位置,即可打开实时曲线。 "+-" 号可 更改曲线纵坐标的间隔,"置零"可实时将传感器物理量归零。

ZHIN	נחם	停止	保存	消音	复位	记录	设置	参数	光谱	数据	 波长值 物理量 	6 连
Ch01 1553.942 1558.699	Ch02 双击波长	Ch0	13	Ch04								
选择JJ 选择P 当前考 1:	動道 01 ⁴ 号 02 0 0 558.700 nm + 置零	 1558.0 1558.0 1558.0 1558.1 1558.3 1558.3 		60 80 100	120 140 160	180 200 220	240 260 280	500 320 340	360 360 400	420 440 460	480 500	

(4)实时光谱

在波长模式下,点击"停止"、"光谱"。进入光谱界面,点击"连续刷新"

io. Ch01	C 通道光谱查看器	0000-0005自动增益	8000~8005手动增益		-	×	
1553.933 1558.704	选择通道: Ch01 💌	开始刷新	停止刷新 本通道	调值 3000 设	置 增益 8000 -	设置	
	No 波长 ^	12000					
	01 1553.925	11000					
	02 1558.095	9000					
	04	8000					
	05	7000					
	06	5000					
	07	5000					
	08	4000					
	09	3000		L			
	10	2000		L			
	11	1000				enterner.	
	12	0		, l			
	13	1528 1530 1532 1	534 1536 1538 1540 1542 1544 1	546 1548 1550 1552 155	4 1556 1558 1560 1562 1564	1566 1568	
			关闭				
1			关闭				

本通道阈值:若传感器光损失过大,出线波峰很低的情况,可根据纵坐标的数值来调整通道阈值,点击"设置",完成调整。使波峰数量和左侧数据栏中的数据个数相同即可。

增益: 增益只在 100hz 及以上设备起作用, 分为 8000-8005 五个等级, 光谱功率依次 增强。

(4)参数配置

在波长模式下,点击"停止"、"参数"。进入参数配置界面,此功能可在配置 结束后直接数值相应的物理量值,我们以应变、温度、位移传感器为例进行介绍。

工程结构安全整体解决方案服务商 | 智能结构技术引领者

Chul	传感器	系数列表	ALL	•		键	全体置零	通道号	1	0物理量	1
	通道	序号	类型	常数项	一次项	偏置量	TC通道	序列号	1		_
	1	1	1	1553.94473975	0.01000000	0.000	0	类型	1-应变类 ue 🔹		
	1	1	0	1558, 72943197 1529, 20000000	0.01000000	0.000	0	常数项	1553, 94473975		
	4	1	1	1530.00000000	0.88800000	0.000	0		0.01000000		
								物信伯智	0.0100000		
	_							国際国政	0.000		
								通作通道			
								温补序号	0		
								温补初值	1528, 799		
								温补系数	1.000000		
								波长下限	1552. 432		
	_							波长上限	生成 1555.432		
								动数体	501.0		
								収置し	1000.0		
								掀管值	1002.0		
								注释信息	zs		
								修改	添加		
								rn.ie.c.	2E ulu		

应变传感器 传感器安装稳定后,显示界面出现 2 个波长值,波长 1-1 1540.214nm 为温补光栅,波长 2-1 1550.487nm 为应变光栅。

X 南通智性	科技光纤光栅信号处理器	6									
Z			启动	停止	保存	停存	设置	参数	光谱	 ・波长値 ・物理量 	<mark>個</mark> 连接
No.	Ch01	Ch02	0	7h03	Ch04						
01	1540.212										
02	1550.492										
03											
04											
05											
06											
07											
08											
09											

应变传感器参数

应变计算方程式: $\varepsilon = \frac{\left[\lambda - \lambda_0 - (\lambda_1 - \lambda_0)\right]}{K}$	$\left[-\dot{\lambda_t} \right] \times \frac{1}{a} \times b $	
λ:应变光栅测量波长(mm)	え:应变光	册初始波长(nm)
λ _i :温度补偿光栅测量波长(nm)	え:温度补信	尝光栅初始波长(nm)
a:温度补偿光栅温度灵敏度系数	0.011051	nm/°C
b:应变光栅温度系数	0.016498	nm/°C
k: 应变一次项系数	0.000716	<u>nm</u> /με

根据提供的检测证书数据进行设计,首先设置温补光栅,如下图

	传感器	系数列表	ALL	•		一顿	全体置零	通0号 [1	〇初埋並
Ch01	诵道	序号	类型	常数项	一次项	偏置量	TC通道	序2号	1	-
	1	1	1	1540.21200000	0.01000000	0.000	0	±3 T	8-温补类 pm 🔹	
	1	2	1	1558. 72943197	0.01000000	0.000	0		1540.040	
	4	1	1	1529, 20000000	0.88800000	0.000	0		1540.212	
	1		-	1000.00000000	0.00000000	0.000	÷	一次系数	0	
								数值偏置	0.000	
								温冰通道	0	
									0	
								温补序号	0	
								温神の値	1540.212	
								坦林至数		
								which is the second		
								波长卜限	1538.712 牛成	6
								波长上限	1541.712	
								辅酸值	501.0	
									1000 0	
								报警值	1002.0	
								注释信息		
							0	48.36	添hn	
								15°FX	такли	
	1							删除	很出	

设置应变光栅,一次项系数为检测证书中的 k 值, 温补通道为温补传感器所在的 位置, 温补系数为检测证书中 b/a 的比值。由于左侧列表中没有通道 1, 序号 2 的数 据, 所以点击添加。

chai	传感器	系数列表	ALL	-			全体置零	通道 <mark>9</mark>	1	0 物理量
Cn01	通道	序号	类型	常数项	一次项	偏置量	TC通道	序列2	2	1
	1	1	1	1540. 21200000	0.01000000	0.000	0	类型③	1-应变类 ue 🔹	
	2	1	0	1529. 20000000	0.01000000	0.000	0	常数10	1550. 481	
	4	1	1	1530.00000000	0.88800000	0.000	0	一次6次	0.000716	-
	_							数值偏置	0,000	
								温补6	1	1
									1	-
									1550, 401	-
								温朴他里	1550. 481	
								温补乳权	1.49	
								波长下限	1548.981 4 50	10
								波长上限	1551.981	
								预警值	501.0	
	_							报警值	1002.0	-
								注释信息		-
							-	1111+10104	i sæhn	
							9	修改	836.JU	
	6						,	删除	退出	

完成设置后,返回主页面,点击"启动""物理量",则可直接输出应变值。其他温补类传感器设置步骤基本相同。

温度传感器 当连接温度传感器后,通道 1 序号 1 出现波长 1540.729。通过检测证书上所给的参数进行设置。

次 Ch01 C 102 Ch03 Ch04	1 2 1 连孩	数据源:192.168.0.19 端 曰:4567 频 率:1000Hz
Nc. Ch01 Ch02 Ch03 Ch04 01 1540.729		
01 1540.729 02 03 04 05		
02 03 04 05		
03 04 05		
04		
05		
06		
07		
08		
09		
10		
11		
12		(^{0.55} 54×
13		a second
14		
15		
10		
17		
10		
20		

温度传感器参数 (一次)

温度计算方程式: $T_i = \frac{\lambda_i - \lambda_0}{k}$			
^え :i时刻传感器输出的波长(nm)	λ ₀ :"0"时刻	刻传感器初续	始波长(mm)
k:传感器一次项系数	0.010892	mm∕°C	

检验结果

量程: -40~200℃	工作温度: -40~200℃	精度: ±0.5℃
分辨率: 0.1℃	初始波长(0℃): 1540.500nm	

B - 1

< 10.0 M	- ALSO	avel						223	-
通道	序号	类型	常数项	一次项	二次项	TC通道	TC序号	序列号	1
	1 2 1	0 1 0	1540, 500000 1550, 481000 1550, 481000	0.01089200 0.00071600 0.00071600	0.00000000 0.00000000 0.00000000	0 1 1	0 1 1	类型	0-温度类 ℃
								币 <u>奴</u> 项 一次系数	0. 010892
								二次系数	0.00000000
								温补通道	0
								温补序号	0
								温补初值	1540. 500
								温补系数	0.000
								波长下限	1536.124 4
								波长上限	1545.124
								注释信息	温度1
								修改	添加
_								删除	退出

设置完成后,返回主页面可输出实时的绝对温度值。

振动传感器当连接振动传感器后,通道1序号1出现波长1540.729。

XX milliste	料技 光纤光烟信号处理器				_				_			– 5 ×
Z			启动	停止	保存	检查	设置	参取	光谱	 ・波长値 物理量 	₩ 注核	数据源:192,168.0.19 端 曰:4567 颏 率:1000Hz
Nc.	Ch01	C 102	(Ch03	Ch04							
02	1340.729											
03 04												
05												
07												
08												
10 11												
12												0.1 K/s 54×
14												-
16												
17 18												
19 20												

通谱	这只	米刑	一 一	一次而	一次商	TC通道	で这具	应利县	1
1 1 2	1 2 1	10 1 0	1540, 736000 1550, 481000 1550, 481000	0. 00000000 0. 00071600 0. 00071600	0. 00000000 0. 00000000 0. 00000000 0. 00000000	0 1 1	0 1 1	子列与 类型 常数项	1 10-频率类Hz 1540.736000
								一次系数 二次系数 温补通道	0.00000000
								温补序号 温补初值 温补系数	0 1540. 736 0. 000
								波长下限波长上限	1536.124 1545.124 生产
								注释信息	振动1 添加
								删除	退出

设置完成后返回主界面,在波长位置上双击,出现数据实时曲线,勾选显示频 谱,即可实时显示当前频率值。

		盾	刻 停1	L 保存	检查	设置	参数	光谱	 ・波长信 ・物理量 	2 连接	数据源:192.168.0.1 端 口:4567 频 率:1000Hz
0.	Ch01 1540.728	Ch02	Ch03	Ch04							
		^{空(z)曲成} 选择通道 选择序 当前数(1(下品	道 01 · · · · · · · · · · · · · · · · · · ·	1542.0 1541.5 1541.5 1540.5 1540.0 0 20 40 6	0 80 100 120 1	40 160 180 209	20 240 260 280	300 370 340 36	0 380 400 420 440 4		e Box Disc
											-

(5)报警配置

报警功能需要用户自行购买外置报警灯,将报警灯串口线与电脑连接,并在软件设置里选择相应串口号。

2. 参数配置栏里将传感器物理量进行配置,预警、报警汁框内填入相应设置值即可。

	6感器	系数列表	ALL	•		一個	全体置零	通道号	1	0 物理量	
No. Ch01	通道	序号	米刑	常設面		信習量	TC通道	序列号	1		
	1	1	1	1553. 94473975	0.01000000	0.000	0	米刑	1-应变类 118 *		
	1	2	1	1558. 72943197	0.01000000	0.000	0	大生	· /2/.5 w		
	2	1	0	1529. 20000000	0.01000000	0.000	0	常数项	1553. 94473975		
	*	1	1	1550. 00000000	0. 88800000	0.000	0	一次系数	0.01000000		
								教值偏置	0.000		
								101123	0.000		
								通作週週			
								温补序号	0		
								温补初值	1528.799		
								(日本) 初生	1.000000		
								通作录数	1.000000		
								波长下限	1552. 432 /t st		
								波长上限	1555. 432		
								2万数法	501.0		
								顶管围	301.0		
								报警值	1002.0		
								注释信息	ZS		
								1 to min	1 Mitten		
								修改			
								册條余	退出		

3. 报警功能需要用户自行购买外置报警灯,将报警灯串口线与电脑连接,并在软件设置里选择相应串口号。警报响起后,点击"消音"可停止声光报警。"复位"是 将物理量值归零,报警设置值不会变化。"记录"保存了报警的时间、次数和具体报 警值。

No. Ch01 Ch02 Ch03 Ch04 11 -	Z	ZIHIXI		启动	保存	消音	复位	记录	设置	参数	光谱	数据	 · 波长值 · 物理量 	9 中
1 1 2 1 3 1 4 1 5 1 6 1 9 1 0 1 1 1 2 1 3 1 6 1 7 1 8 1 9 1 1 1 1 1 2 1 3 1 6 1 7 1 8 1 9 1	Ch	101	Ch02	C	h03	Ch04								
2	1		í.	1			1							
3 4 -														

(5)数据回放功能

X智性科	技 光纤光栅信号处理	925						-		-		-	o x
2	ZIHIN	ING	启动	保存	消音	复位	记录	设置	参数	光谱	数据	 ・波长值 ・物理量 	₩ 中断
No.	Ch01	Ch02	Ch	03	Ch04								
01													
02													
03													
04													
05													
00													
07													
00													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
-													
		_											

INO.	Ch01	Chor	Ch02	Chot	Chos	Choc	Ch07	Chop
	Cnot	Ch02	Ch03	Cn04	Chu5	Ch06	Cn07	Cn08
01	1553.929							
02	1558.656							
03								
04								
05								
007								
08								
00								
٢.								>
•								
诵谱	01 • 序号	02 -	当前序号		数值 1553 020	a Ref () A	2022-08-23	11.17.50
NGVE			3 10/1. 3		<u>жн</u> 1000. 52.	9 F11F	1 2022 00 20	11.11.05
选择范	围 0 -	1244 设	置范围 最小	值 1558.208	最大值 1559.39	90 平均值	1558.709	导出范围数据
							20	
	1 1 1	1 1 1	1 1 1	1 1 1			1 1 1	1 1 1 1
							01	ΔΔΔΔ
1559.4								
1559.4 1559.2								
1559.4 1559.2 1559.0								

数据功能可对已保存的数据进行回放,曲线绘制、局部方法、数据部分提取。

- 1、选择文件(选择已经保存的文件)--加载
- 2、在曲线上点击鼠标向右下角拖动,实现局部放大,反向缩小。
- 3、选择数据范围后可导出范围数据。

智性科技南通有限公司

- 电话: 0513-89168088
- 传真: 0513-89168078
- 地址: 江苏省南通市经济技术开发区景兴路 300 号
- 网址: http://www.zhixingst.cn